Abstract

We investigated the concentrations, distributions, potential sources, and air-soil exchange of 10 OPFRs in the air and soil of Dalian. The concentrations of Σ10OPFRs in the soil were in the range of 1.07–288 ng/g (mean: 14.0 ng/g), while the concentrations of Σ10OPFRs in the passive air samples were in the range of 313–4760 pg/m3 (mean: 1630 pg/m3). Generally, the concentrations of OPFRs are relatively high in urban areas compared with those in suburban and rural areas, indicating the influence of intensive anthropogenic activities on local OPFR concentrations. Tris(2-chloroisopropyl) phosphate (TCIPP) was the most abundant congener, followed by tris(2-chloroethyl) phosphate (TCEP) and tri-n-butyl phosphate (TNBP). Spearman correlation analysis illustrated that OPFRs in the air shared common sources, while the sources of OPFRs in the soil were diverse. Net volatilization of TNBP from the soil to the air was observed at all sampling sites, whereas opposite trends were observed for TCIPP, TDCIPP, TBOEP, TPHP, EHDPP, TEHP, TPPO, and TMPP. The exchange trends of TCEP were characterized as volatilization in urban areas, but equilibrium in rural ones. TCEP showed the highest volatilization flux (1100 ng/m3/d), whereas TCIPP showed the highest deposition flux (−171 ng/m3/d). The significant diffusive fluxes of certain OPFRs, especially of those with suspected toxicities, suggested potential high exposure levels to these chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.