Abstract

Although recent studies indicate that fluvial systems can be accumulation areas for microplastics (MPs), the common perception still treats rivers and streams primarily as pure transport vectors for MPs. In this study we investigate the occurrence of MPs in a yet unnoticed but essential compartment of fluvial ecosystems - the hyporheic zone (HZ). Larger MP particles (500–5,000 µm) were detected using attenuated total reflectance (ATR) - Fourier-transform infrared (FTIR) spectroscopy. Our analysis of MPs (500–5,000 µm) in five freeze cores extracted for the Roter Main River sediments (Germany) showed that MPs were detectable down to a depth of 0.6 m below the streambed in low abundances (≪1 particle per kg dry weight). Additionally, one core was analyzed as an example for smaller MPs (20–500 µm) with focal plane array (FPA)- based µFTIR spectroscopy. Highest MP abundances (~30,000 particles per kg dry weight) were measured for pore scale particles (20–50 µm). The detected high abundances indicate that the HZ can be a significant accumulation area for pore scale MPs (20–50 µm), a size fraction that yet is not considered in literature. As the HZ is known as an important habitat for invertebrates representing the base of riverine food webs, aquatic food webs can potentially be threatened by the presence of MPs in the HZ. Hyporheic exchange is discussed as a potential mechanism leading to a transfer of pore scale MPs from surface flow into streambed sediments and as a potential vector for small MPs to enter the local aquifer. MPs in the HZ therefore may be a potential risk for drinking water supplies, particularly during drinking water production via river bank filtration.

Highlights

  • Our data indicate that the HZ represents an important accumulation zone

  • 500 μm the results obtained from one sediment core serves as an example suggesting that pore scale MPs

  • we conclude that the importance of MPs

Read more

Summary

Methods

The Roter Main River is part of the headwater catchment of the. Sampling for MPs in the Roter Main River was performed in May 2016 and August 2017 and involved extracting five freeze cores down to a maximum depth of 60 cm from a natural riffle structure. Freeze core sampling was chosen mainly because the streambed materials involved larger gravels and fragments. For the freeze core extraction, a stainless-steel pipe was hammered into the sediments and filled with a mixture of dry ice and ethanol. All five cores where extracted and analyzed for MPs in the size range 500 to 5,000 μm using ATR-FTIR spectroscopy and one core was investigated for MP particles in the size range [20–500] μm which includes pore scale and sub-pore scale particles (20–50 μm) using focal plane array FPA-based μFTIR spectroscopy

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call