Abstract
Structuring jobs into occupations is the first step for analysis tasks in many fields of research, including economics and public health, as well as for practical applications like matching job seekers to available jobs. We present a data resource, derived with natural language processing techniques from over 42 million unstructured job postings in the National Labor Exchange, that empirically models the associations between occupation codes (estimated initially by the Standardized Occupation Coding for Computer-assisted Epidemiological Research method), skill keywords, job titles, and full-text job descriptions in the United States during the years 2019 and 2021. We model the probability that a job title is associated with an occupation code and that a job description is associated with skill keywords and occupation codes. Our models are openly available in the sockit python package, which can assign occupation codes to job titles, parse skills from and assign occupation codes to job postings and resumes, and estimate occupational similarity among job postings, resumes, and occupation codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.