Abstract

Occupational exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed by either air monitoring or biomonitoring using urinary 1-hydroxypyrene (1-OHP) or 3-hydroxybenzo(a)pyrene (3-OHBaP). The aim of this study was to understand the links between atmospheric PAHs and urinary metabolites, in order to improve the biomonitoring strategy for assessing carcinogenic risk. Personal air sampling for pyrene and BaP measurements, and urines for 1-OHP and 3-OHBaP analyses of seven workers from electrode production plant were collected every day of the working week. High variability of atmospheric levels between activities and between days was observed, especially for gaseous pyrene. No correlation was found between urinary metabolites: 1-OHP maximum levels occurred for "electrode extrusion" activity; those of 3-OHBaP occurred for "raw materials dispatcher." Sixty percentage of 3-OHBaP maximum levels were observed in urines collected at the beginning of shift the last workday. Those of 1-OHP occurred at different sampling times, depending on the gaseous pyrene levels (not stopped by P3 respirators). Dermal absorption of PAHs was confirmed by significant effect of particulate pyrene on 1-OHP in the samples collected the morning of the following day (p < 0.02, n = 25). Lack of correlation between metabolites concentrations emphasizes the non-relevance of 1-OHP, from a non-carcinogenic gaseous and particulate compound, and the great interest of 3-OHBaP, from carcinogenic BaP. Its slower urinary elimination prevents the risk of exposure underestimation, and urinary analysis should be performed at the beginning of shift the end of working week, especially in case of high exposure variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.