Abstract

Organotin compounds (OTCs) are widely regulated but rank among the most used organometallic compounds in various industrial sectors. They are significantly more toxic than inorganic tin compounds. At workplaces, OTCs can be released as vapors or dust particles and can be absorbed by inhalation or skin contact. Occupational exposure thus represents a great risk for the absorption of OTCs for employees. Methods for OTCs speciation in workplace air monitoring currently do not exist. This study describes the development of a separation method for eleven in Germany regulated OTCs via HPLC-ICP-MS. The method allows a near baseline separation of MMT, MBT, MOT, MPhT, DMT, DBT, DPhT, TMT, TBT, TPhT and TTMT within 22 min on a C18 column and a ternary solvent and flow rate gradient using methanol, acetonitrile, and ultrapure water + 6% (v/v) acetic acid + 0.17% (m/v) α-tropolone. Ten analytes show linearity in the working range of 10 - 100 µg OTCs/L with R² > 0.999. Due to its high volatility the analyte TTMT showed a quadratic relationship between concentration and signal intensity with R² = 0.9998. The determination of the instrumental limits resulted in detection limits between 0.14 and 0.57 µg Sn/L and limits of quantification between 0.49 and 1.97 µg Sn/L. Over the course of this study thermal instability and cross reactivity of OTC in solution became apparent. Formation of two reaction products in mixed OTCs solutions have been observed. These effects will further be examined within development of appropriate sampling and sample preparation for workplace air to provide a suitable method for the determination of OTCs at workplaces according to normative references.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call