Abstract
We derive a large deviation principle for the occupation time func-tional, acting on functions with zero Lebesgue integral, for both super-Brownian motion and critical branching Brownian motion in three dimensions. Our technique, based on a moment formula of Dynkin, allows us to compute the exact rate functions, which differ for the two processes. Obtaining the exact rate function for the super-Brownian motion solves a conjecture of Lee and Remillard. We also show the corresponding CLT and obtain similar results for the superprocesses and critical branching process built over the symmetric stable process of index $\beta$ in $R^d$, with $d < 2\beta < 2 + d$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.