Abstract
BackgroundReconciling agriculture and biodiversity conservation is a challenge given the growing demand for agricultural products. In recent decades, Argentina has witnessed agricultural expansion and intensification affecting biodiversity and associated ecosystem services. Within agroecosystems, the level of habitat quality is critical for birds, and may depend on vegetation structure, availability of invertebrate prey, and the use of pesticides. Although the relationship between vegetation structure and avian occurrence has been widely studied, to our knowledge, there are no studies that also incorporate prey availability throughout the cycle of soybean crops in Argentina. We estimated and predicted the effects of land cover and temporal variation on the occurrence of avian foraging guilds in Entre Ríos, Argentina, in order to guide management related to potential ecosystem services provided by birds. We also estimated temporal effects of vegetation structure and insecticides on the main arthropod orders consumed by birds to evaluate prey availability.MethodsWe conducted bird and arthropod surveys for 2 years along transects located in 20 randomly selected soybean fields (N = 60) and their adjacent borders (N = 78) throughout the crop growing season, in four seasons. We estimated avian occupancy, accounting for imperfect detection, and arthropod counts fitting generalized linear mixed models.ResultsThe number of native trees in field borders positively influenced the occurrence of most bird species, mainly insectivores. Granivore foliage gleaners, also were positively affected by grass height. Salliers and aerial foragers were weakly affected by distance to forest and native trees. In general, the availability of invertebrates to birds was highest during the third season. Arthropod counts in borders were greater during the last three crop stages than during the pre-sowing period.ConclusionsWe found that with 10 to 15 native tree species in borders, coupled with a complex vegetation structure with shrubs and grasses, we could conserve a wide spectrum of insectivorous birds, and may contribute to the invertebrate pest control service. Vegetated field borders function as a refuge for arthropods, especially agriculturally beneficial taxa such as Hymenopterans. Finally, several groups of birds use the interior of the fields and could help control pests.
Highlights
Reconciling agriculture and biodiversity conservation is a challenge given the growing demand for agricultural products
We found that the highest occupancy for most guilds of insectivorous birds occurred in soybean field borders containing at least 10 native trees
With 10 to 15 native tree species in borders, coupled with a complex vegetation structure with shrubs and grasses, we could conserve a wide spectrum of insectivorous birds, which is consistent with other studies that recommend planting or conserving tress in borders (Kross et al 2016)
Summary
Reconciling agriculture and biodiversity conservation is a challenge given the growing demand for agricultural products. Argentina has witnessed agricultural expansion and intensification affecting biodiversity and associated ecosystem services. Reconciling agriculture production and biodiversity conservation is a challenge given the growing demand for agricultural products This demand has led to global intensification and expansion of agriculture, affecting biodiversity and associated ecosystem services (Foley et al 2011; Tscharntke et al 2012). Because the level of habitat quality is critical for species, the removal of field-scale features such as borders and use of pesticides may be key to avian conservation because they affect the availability and quality of shelter, nesting sites, and food resources (Wiens and Rotenberry 1981; Freemark and Boutin 1995; Krebs et al 1999; Donald et al 2006; Kirk et al 2018). Understanding the effects of agricultural practices at a field-scale has important implications for avian conservation and the ecological services that birds provide (Kirk et al 1996; Kross et al 2016; Whelan et al 2016)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.