Abstract

Buildings-to-grid (BtG) integration simulations are becoming prevalent due to the development of smart buildings and smart grid. Buildings are the major energy consumers of the total electricity production worldwide. There is an urgent need to integrate buildings with smart grid operation to accommodate the needs of flexible load controls due to the increasing of renewable energy resources. In the imminent future, smart buildings can contribute to grid stability by changing their overall demand patterns in response to grid operations. Meanwhile, building thermal energy consumption is also maintained by building operators to satisfy occupants’ thermal comforts. However, explicit large-scale demonstrations based on a simulation platform that integrates building occupancy, building physics, and grid physics at community level have not been explored. This study develops an occupancy behavior driven BtG optimization platform that can simulate, predict and optimize indoor temperature and energy consumption of buildings, generator setpoint and deviation while maintaining acceptable grid frequency. Authors have tested the framework on two standard power networks. The results show that the integrated framework can provide potential cost savings up to 60% comparing with the decoupled operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.