Abstract

The objective of this research was to analyze the effect of orthodontic treatment with maxillary permanent first molar extraction on the occlusal stress distribution and displacement in the human skull. A 3-dimensional finite element model was constructed on the basis of a computed tomography scan, and it wasused as the pretreatment model. The software used for geometric modeling was Solid Works (DassaultSystèmes, Paris, France). For the extraction model, the maxillary permanent first molar was removed, followed by a repositioning of the anterior and posterior segments to create a space closure model. Stress distribution was evaluated under the simulation of 1000N for occlusal forces and 400N for masseter muscle force. The highest von Mises stress was observed at the zygomatic process of the temporal bone across all 3 models (25MPa), whereas stress at the pterygomaxillary suture area was almost 50% less. However, the stress in the pterygomaxillary suture area was lowest in the extraction model (18%) and space closure (30%). Stress in the zygomatic process of the frontal bone and frontal process of the maxilla increased from pretreatment to extraction model followed by space closure model. The occlusal forces were transferred through maxillonasal, maxillozygomatic, and maxillopterygoid stress trajectories. The mesial displacement of the molars may weaken the role of maxillopterygoid stress trajectory while strengthening the role of maxillonasal stress trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.