Abstract

Occludin is a major membrane component of tight junctions of endothelial cells, though the role of this molecule is not fully understood. RLE cells, derived from rat lung endothelial cells, express a negligible level of occludin with clear expression of E-cadherin and ZO-1 at cell junctions. Introduction of occludin by transfection induced clear junctional expression of occludin with few or no changes of expression of E-cadherin and ZO-1. The paracellular barrier function, as determined by transelectrical resistance and flux of non-ionic small molecules, was not detectably upregulated. When cells expressing occludin were cocultured with RLE cells null for occludin, clear junctional expression of occludin was observed irrespective of the expression of occludin on the apposing cells. Cortical actin was developed at the site of these occludin positive cell junctions. Treatment of cells with an actin depolymerizing agent, mycalolide B, abolished junctional expression of occludin together with E-cadherin and circumferential actin. ZO-1 showed relative resistance to this actin depolymerizing treatment and was maintained at the cell junctions, though fragmentation of immunoreactivity was detectable. Collectively, junctional expression of occludin was not associated with paracellular barrier function in this cell line. There was, however, a close correlation of occludin with the actin cytoskeleton, indicating a role of occludin as an important molecule in the regulation of the actin cytoskeleton in endothelial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call