Abstract
Occludin plays an important role in maintaining tight junction barrier function in many types of epithelia. We previously reported that activation of transient receptor potential vanilloid subtype 1 (TRPV1) in rabbit submandibular gland promoted salivary secretion, partly by an increase in paracellular permeability. We have now explored the role of occludin in TRPV1-modulated paracellular permeability in a rat submandibular gland cell line SMG-C6. Both TRPV1 and occludin were expressed in SMG-C6 cells, and capsaicin induced redistribution of occludin, but not claudin-3, claudin-4 or E-cadherin, from the cell membrane into the cytoplasm. Capsaicin also decreased transepithelial electrical resistance (TER) and increased the Trypan Blue and FITC-dextran flux. Capsazepine (CPZ), a TRPV1 antagonist, inhibited the capsaicin-induced occludin redistribution and TER decrease. Moreover, occludin knockdown by shRNA suppressed, whereas occludin re-expression restored, the TER response to capsaicin. Mechanistically, TRPV1 activation increased ERK1/2 and MLC2 phosphorylation. PD98059, an ERK1/2 kinase inhibitor, abolished the capsaicin-induced MLC2 phosphorylation, whereas ML-7, an MLC2 kinase inhibitor, did not affect ERK1/2 phosphorylation, suggesting that ERK1/2 is the upstream signaling molecule of MLC2. Capsaicin also induced F-actin reorganization, which was abolished by CPZ, PD98059 and ML-7, indicating that TRPV1 activation altered F-actin organization in an ERK1/2- and MLC2-dependent manner. Furthermore, either PD98059 or ML-7 could abolish the capsaicin-induced TER response and occludin redistribution, whereas knockdown of ERK1/2 further confirmed that the TRPV1-modulated paracellular permeability was ERK1/2 dependent. Taken together, these results identified a crucial role of occludin in submandibular epithelial cells, and more importantly, demonstrated that occludin was required to mediate TRPV1-modulated paracellular permeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.