Abstract
Person Re-Identification (ReID) has achieved remarkable performance along with the deep learning era. However, most approaches carry out ReID only based upon holistic pedestrian regions. In contrast, real-world scenarios involve occluded pedestrians, which provide partial visual appearances and destroy the ReID accuracy. A common strategy is to locate visible body parts by auxiliary model, which however suffers from significant domain gaps and data bias issues. To avoid such problematic models in occluded person ReID, we propose the Occlusion-Aware Mask Network (OAMN). In particular, we incorporate an attention-guided mask module, which requires guidance from labeled occlusion data. To this end, we propose a novel occlusion augmentation scheme that produces diverse and precisely labeled occlusion for any holistic dataset. The proposed scheme suits real-world scenarios better than existing schemes, which consider only limited types of occlusions. We also offer a novel occlusion unification scheme to tackle ambiguity information at the test phase. The above three components enable existing attention mechanisms to precisely capture body parts regardless of the occlusion. Comprehensive experiments on a variety of person ReID benchmarks demonstrate the superiority of OAMN over state-of-the-arts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.