Abstract

BackgroundNonketotic hyperglycemia often causes seizures. Recently, seizures associated with nonketotic hyperglycemia have been found to be associated with subcortical T2 hypointensity on magnetic resonance imaging, especially in the occipital lobes. However, the mechanism remains unclear, although iron accumulation is suggested. We present a case of occipital lobe seizures associated with nonketotic hyperglycemia supporting the hypothesis that the mechanism of subcortical T2 hypointensity is iron accumulation using gradient-echo T2*-weighted magnetic resonance imaging.Case presentationA 65-year-old Japanese man complained of intermittent pastel-colored flashing lights. On neurological examination, he also had lower right-side quadrant hemianopia. No other abnormal neurological findings were found. On laboratory analysis, his blood glucose level was 370 mg/dL, HbA1c was 11.4 %, and serum osmolarity was 326 mOsm/L. No ketones were detected in urine. A magnetic resonance imaging scan of his head showed subcortical T2 and T2* hypointensity in his left occipital lobe. Single-photon emission computed tomography with I123-N-isopropyl-iodoamphetamine revealed hyperperfusion in the left dominant occipital lobe. These magnetic resonance imaging abnormalities resolved during clinical recovery and treatment to control his blood sugar level. Therefore, a diagnosis of occipital lobe seizures associated with nonketotic hyperglycemia was made.ConclusionsTo the best of our knowledge, this is the first case of occipital lobe seizures associated with nonketotic hyperglycemia supporting the role of iron accumulation as a mechanism for subcortical T2 hypointensity using T2*-magnetic resonance imaging.

Highlights

  • To the best of our knowledge, this is the first case of occipital lobe seizures associated with nonketotic hyperglycemia supporting the role of iron accumulation as a mechanism for subcortical T2 hypointensity using T2*magnetic resonance imaging

  • Our case supports the hypothesis that the mechanism of subcortical T2 hypointensity is iron accumulation, because gradient-echo T2*-weighted magnetic resonance imaging (T2*-MRI) revealed hypointensity in the same region

  • A brain magnetic resonance imaging (MRI) scan demonstrated subcortical hypointensity in the left occipital lobe in gradient-echo T2-weighted MRI (T2-MRI) and T2*-MRI, and slight cortical hyperintensity in the adjacent area in diffusionweighted imaging (DWI) (Fig. 1a–c)

Read more

Summary

Conclusions

To the best of our knowledge, this is the first case of occipital lobe seizures associated with NKH supporting the role of iron accumulation as a mechanism for subcortical T2 hypointensity using T2*-MRI. The precise mechanism of iron accumulation remains uncertain. Further investigations are needed to reach verifiable conclusions. Abbreviations DM, diabetes mellitus; DWI, diffusion-weighted imaging; EEG, electroencephalography; HHS, hyperosmolar hyperglycemic syndrome; IMP-SPECT, singlephoton emission computed tomography with I123-N-isopropyl-iodoamphetamine; MRI, magnetic resonance imaging; NKH, nonketotic hyperglycemia; PRES, posterior reversible encephalopathy syndrome; T2*-MRI, gradient-echo T2*weighted magnetic resonance imaging; T2-MRI, gradient-echo T2-weighted magnetic resonance imaging

Background
Findings
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.