Abstract

In the spirit of Occam’s razor, we propose a parsimoniuos regime-switching model for describing the complex dynamics of electricity and natural gas prices observed in real markets. The model was built using a machine learning-based methodology, namely a cluster analysis to investigate the properties of the stable dynamics and a deep neural network appropriately trained on market data to drive transitions between different regimes. The main purposes of this study are twofold: (1) to build the simplest model capable of incorporating the main stylized facts of electricity and natural gas prices, including dynamic correlation; (2) to define an appropriate calibration procedure on market data. We applied this methodology to the Italian energy market. The results obtained show remarkable agreement with the empirical data, satisfactorily reproducing the first four moments of the empirical distributions of log-returns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.