Abstract
We describe a parallelizable block-cipher mode of operation that simultaneously provides privacy and authenticity. OCB encrypts-and-authenticates a nonempty string M ∈ {0, 1}* using ⌈| M |/ n ⌉ + 2 block-cipher invocations, where n is the block length of the underlying block cipher. Additional overhead is small. OCB refines a scheme, IAPM, suggested by Charanjit Jutla. Desirable properties of OCB include the ability to encrypt a bit string of arbitrary length into a ciphertext of minimal length, cheap offset calculations, cheap key setup, a single underlying cryptographic key, no extended-precision addition, a nearly optimal number of block-cipher calls, and no requirement for a random IV. We prove OCB secure, quantifying the adversary's ability to violate the mode's privacy or authenticity in terms of the quality of its block cipher as a pseudorandom permutation (PRP) or as a strong PRP, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Information and System Security
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.