Abstract
The rectifying properties modulated by isomeric anchoring groups of dipyrimidinyl–diphenyl co-oligomer diodes sandwiched between two gold electrodes are investigated using density functional theory combined with the nonequilibrium Greenʼs function method. Our results show that the rectifying behaviors of the co-oligomer diode are significantly modulated by isomeric substitution of anchoring groups. When the isomeride nitrile end group is replaced by the isocyanide one, for symmetric arrangement of electrodes, the rectifying direction shows obvious inversion for the isocyanide–diblock–thiol junction, and the rectification ratio is obviously enhanced for the thiol–diblock–isocyanide junction. The influence on rectification induced by asymmetric electrodes is also discussed. The analysis of the transmission spectra and the molecular projected self-consistent Hamiltonian under various external bias voltages gives inside mechanisms of the observed results. • Rectifying property is modulated by substituting the nitrile by isocyanide group. • Rectifying properties depend closely on arrangement of the anchoring groups. • Asymmetric contact has obvious effect on rectification of molecular junctions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.