Abstract

The present paper describes the synthesis and characterization of a new polymeric biomaterial mineralized with calcium phosphate using the reaction–diffusion method. The scaffold of this biomaterial was a hydrogel constituted by biocompatible polyethylene glycol methyl ether methacrylate (PEGMEM) and 2-(dimethylamino)ethyl methacrylate (DMAEM), which were cross-linked with N-N’-methylenebisacrylamide (BIS). The cross-linking content of the hydrogels was varied from 0.25% to 15% (w/w). The gels were used as matrix where two reactants (Na2HPO4 and CaCl2) diffused from both ends of the gel and upon encountering produced calcium phosphate crystals that precipitated within the polymer matrix forming bands. The shape of the crystals was tuned by modifying the matrix porosity in such a way that when the polymer matrix was slightly reticulated the diffusion reaction produced round calcium phosphate microcrystals, whilst when the polymer matrix was highly reticulated the reaction yielded flat calcium phosphate crystals. Selected area electron diffraction performed on the nanocrystals that constitute the microcrystals showed that they were formed by Brushite (CaHPO4.2H2O). This new composite material could be useful in medical and dentistry applications such as bone regeneration, bone repair or tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.