Abstract

Abstract The hydroxyapatite (HAp) is a ceramic biomaterial with wide application in the bone regeneration. It can be obtained by different routes and different precursors. In this study, the synthesis of HAp was carried out by precipitation and subsequent thermal treatment using different calcium precursors: calcium hydroxide from synthetic origin and calcium oxide obtained from the eggshell. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy. By SEM, variations of the crystal size and the concentration of agglomerates were observed. FTIR and XRD analyses proved the formation of HAp and how the (mineral and biological) precursors affected the microstructure. The thermal decomposition process of the calcium oxide obtained from the eggshell showed to be more effective for the synthesis of the hydroxyapatite, resulting in more stable morphology and microstructure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.