Abstract

The method of manufacturing high-strength structural carbon fiber from toupreg based on PPS-214 grade polyphenylene sulfide (Fortron, Germany) and AS4 high-strength carbon fiber (Hexcel, USA) using a promising ATL-technology (Automated Tape Laying) with laser heating is considered. The technology was adapted for the material under study, laboratory models in the form of plates were made, physical and mechanical tests of laboratory samples were carried out. The quality of the binder distribution and the presence of defects were assessed by raster electron microscopy. The influence of the reinforcement, pressing and vacuum heat treatment schemes on improving the mechanical properties of the studied carbon fiber was investigated. It has been found that the samples subjected to vacuum heat treatment have higher mechanical properties due to an increase in the adhesion of the toupreg tapes to each other and the removal of discontinuities formed during the calculation. The value of the ultimate strength at interlayer shear of samples made using a parallel-diagonal scheme increases by 108%, at bending by 370% and by 65% at compression.By processing the toupregs by the ATL with laser heating and subsequent thermal treatment of the products, it is possible to obtain high-strength structural materials with improved physical and mechanical properties, as well as high repeatability and equality of properties throughout the area of the products, even using complex reinforcement schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call