Abstract
A variety of combinations of B-LYP-based double-hybrid density functional theory (DHDFT) procedures and basis sets have been examined. A general observation is that the optimal combination of exchange contributions is in the proximity of 30% Becke 1988 (B88) exchange and 70% Hartree-Fock (HF) exchange, while for the correlation contributions, the use of independently optimized spin-component-scaled Møller-Plesset second-order perturbation theory (SCS-MP2) parameters (MP2OS and MP2SS) is beneficial. The triple-ζ Dunning aug'-cc-pVTZ+d and Pople 6-311+G(3df,2p)+d basis sets are found to be cost-effective for DHDFT methods. As a result, we have formulated the DuT-D3 DHDFT procedure, which employs the aug'-cc-pVTZ+d basis set and includes 30% B88 and 70% HF exchange energies, 59% LYP, 47% MP2OS, and 36% MP2SS correlation energies, and a D3 dispersion correction with the parameters s6 = 0.5, sr,6 = 1.569, and s8 = 0.35. Likewise, the PoT-D3 DHDFT procedure was formulated with the 6-311+G(3df,2p)+d basis set and has 32% B88 and 68% HF exchange energies, 63% LYP, 46% MP2OS, and 27% MP2SS correlation energies, and the D3 parameters s6 = 0.5, sr,6 = 1.569, and s8 = 0.30. Testing using the large E3 set of 740 energies demonstrates the robustness of these methods. Further comparisons show that the performance of these methods, particularly DuT-D3, compares favorably with the previously reported DSD-B-LYP and DSD-B-LYP-D3 methods used in conjunction with quadruple-ζ aug'-pc3+d and aug'-def2-QZVP basis sets but at lower computational expense. The previously reported ωB97X-(LP)/6-311++G(3df,3pd) procedure also performs very well. Our findings highlight the cost-effectiveness of appropriate- and moderate-sized triple-ζ basis sets in the application of DHDFT procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.