Abstract

Two-dimensional (2D) nonmagnetic semiconductors with large Rashba-Dresselhaus (R-D) spin splitting at valence or conduction bands are attractive for magnetic-field-free spintronic applications. However, so far, the number of 2D R-D inorganic semiconductors has been quite limited, and the factors that determine R-D spin splitting as well as rational design of giant spin splitting, remain unclear. For this purpose, by exploiting 2D chiral metal-organic frameworks (CMOFs) as a platform, we theoretically develop a three-step screening method to obtain a series of candidate 2D R-D semiconductors with valence band spin splitting up to 97.2 meV and corresponding R-D coupling constants up to 1.37 eV Å. Interestingly, the valence band spin texture is reversible by flipping the chirality of CMOFs. Furthermore, five keys for obtaining giant R-D spin splitting in 2D CMOFs are successfully identified: (i) chirality, (ii) large spin-orbit coupling, (iii) narrow band gap, (iv) valence and conduction bands having the same symmetry at the Γ point, and (v) strong ligand field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call