Abstract
A residue from the primary treatment of a Wastewater Treatment Plant (WWTP) was used to isolate filamentous fungi with lipase production potential. Two of the 27 isolated fungi presented high hydrolysis index and were selected for lipase production by solid-state fermentation (SSF). The fermentations were conducted at 30 °C for 48 h, with moist air circulation, using 20% (w/w) of the residue mixture with a basal medium (agroindustrial residue—babassu cake), obtaining a solid enzymatic preparation (SEP) with lipase activity of 19 U/g with the fungus identified as Aspergillus terreus. Scum, collected in an anaerobic reactor operating in a WWTP, was hydrolyzed with SEP and subjected to anaerobic biodegradability tests at 30 °C. Different dilutions of crude (Control) or hydrolyzed scum in raw sewage were evaluated. The dilution of 5% (v/v) of hydrolyzed scum in raw sewage proved the most adequate, as it resulted in higher methane yield compared to the raw sewage (196 and 133 mL CH4/g CODadded, respectively), without increasing the chemical oxygen demand (COD) of the treated sewage (138 and 134 mg/L). The enzymatic hydrolysis of the scum, followed by dilution in the influent sewage, is technically feasible and increases methane production in anaerobic reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.