Abstract

Background: Cervical cancer is the fourth most common cancer in women worldwide and was the leading cause of death among approximately 300 000 cases in 2018. The main risk factor for developing this disease is the persistent infection of high-risk types of Human Papillomavirus (HPV); specifically, HPV-18 is recognized as one of the major contributors for adenocarcinoma and squamous cancer. There are three prophylactic vaccines to prevent infection by HPV, but these vaccines are not effective in infected people. On the other hand, despite the success of various types of therapeutic vaccine candidates in clinical trials, none of them is commercially available to treat women with HPV-related malignancies. As the methods used for obtaining those therapeutic candidates are awfully expensive, they could be inaccessible for developing countries. In this scenario, E7 antigen of HPV is considered an ideal target for developing therapeutic vaccines. In accordance with this, the aim of this work is to obtain a recombinant fusion protein with high levels of purity through a profitable process, which could be used as therapeutic alternative for treating tumors expressing the E7 antigen of HPV-18.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.