Abstract
In this study, we propose a novel method for obstructive sleep apnea (OSA) detection using a piezo-electric sensor. OSA is a relatively common sleep disorder. However, more than 80% of OSA patients remain undiagnosed. We investigated the feasibility of OSA assessment using a single-channel physiological signal to simplify the OSA screening. We detected both snoring and heartbeat information by using a piezo-electric sensor, and snoring index (SI) and features based on pulse rate variability (PRV) analysis were extracted from the filtered piezo-electric sensor signal. A support vector machine (SVM) was used as a classifier to detect OSA events. The performance of the proposed method was evaluated on 45 patients from mild, moderate, and severe OSA groups. The method achieved a mean sensitivity, specificity, and accuracy of 72.5%, 74.2%, and 71.5%; 85.8%, 80.5%, and 80.0%; and 70.3%, 77.1%, and 71.9% for the mild, moderate, and severe groups, respectively. Finally, these results not only show the feasibility of OSA detection using a piezo-electric sensor, but also illustrate its usefulness for monitoring sleep and diagnosing OSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.