Abstract

Study objectivesObstructive sleep apnea (OSA) is a sleep disorder caused by transient obstruction of the upper airway and results in intermittent hypoxia, sleep fragmentation, sympathetic nervous system activation, and arousal which can have an adverse effect on cardiovascular disease. It is theorized that OSA might intensify stroke injury. Our goal here was to develop a new model of experimental OSA and test its ability to aggravate behavioral and morphological outcomes following transient brain ischemia/reperfusion. MethodsWe used a 3D printed OSA device to expose C57BL6 mice to 3 h of OSA (obstructive apnea index of 20 events per hour) for three days. These mice were then subjected to ischemia/reperfusion using the middle cerebral artery occlusion model (MCAO) stroke and examined for overall survival, infarct size and neurological scoring. ResultsWe found that OSA transiently decreased respiration and reduced oxygen saturation with bradycardia and tachycardia typical of human responses during apneic events. Brain injury from MCAO was significantly increased by OSA as measured by infarct size and location as well as by intensification of neurological deficits; mortality following MCAO was also increased in OSA animals. ConclusionsOur findings suggest that our new model of OSA alters respiratory and cardiovascular physiological functions and is associated with enhanced ischemia/reperfusion mediated injury in our non-invasive, OSA intensified model of stroke.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call