Abstract

Obstructive sleep apnea (OSA), which has high morbidity and complications, is diagnosed via polysomnography (PSG). However, this method is expensive, time-consuming, and causes discomfort to the patient. Single-lead electrocardiogram (ECG) is a potential alternative to PSG for OSA diagnosis. Recent studies have successfully applied deep learning methods to OSA detection using ECG and obtained great success. However, most of these methods only focus on heart rate variability (HRV), ignoring the importance of ECG-derived respiration (EDR). In addition, they used relatively simple networks, and cannot extract more complex features. In this study, we proposed a one-dimensional squeeze-and-excitation (SE) residual group network to thoroughly extract the complementary information between HRV and EDR. We used the released and withheld sets in the Apnea-ECG dataset to develop and test the proposed method, respectively. In the withheld set, the method has an accuracy of 90.3%, a sensitivity of 87.6%, and a specificity of 91.9% for per-segment detection, indicating an improvement over existing methods for the same dataset. The proposed method can be integrated with wearable devices to realize inexpensive, convenient, and highly efficient OSA detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.