Abstract

We investigate necessary conditions for Gorenstein projective varieties to admit semiorthogonal decompositions introduced by Kawamata, with main emphasis on threefolds with isolated compound $A_n$ singularities. We introduce obstructions coming from Algebraic $\mathrm{K}$-theory and translate them into the concept of maximal nonfactoriality. Using these obstructions we show that many classes of nodal threefolds do not admit Kawamata type semiorthogonal decompositions. These include nodal hypersurfaces and double solids, with the exception of a nodal quadric, and del Pezzo threefolds of degrees $1 \le d \le 4$ with maximal class group rank. We also investigate when does a blow up of a smooth threefold in a singular curve admit a Kawamata type semiorthogonal decomposition and we give a complete answer to this question when the curve is nodal and has only rational components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call