Abstract

Abstract When a vehicle travels over a large obstacle at a significant speed, dynamic loads are created that are severe enough to cause damage to its components. Prediction of these impact loads early in the design can greatly aid the vehicle development process. Thus, automobile manufactures have devoted considerable effort developing computer models to simulate durability events. An important part of any durability simulation is the tire model. This paper focuses on the problem of efficiently predicting dynamic loads that occur when an all terrain vehicle (ATV) impacts obstacle impact. An ATV simulation model that uses an efficient and simple tire model to represent the enveloping behavior and dynamic response was developed with the AUTOSIM multibody dynamics program. This program, using Kane's Method and symbolic algebra to automatically generate fully parametric simulations that are both efficient and easy to use, was used to model both the tire and ATV rigid body dynamics. This paper describes the combined ATV multi-body vehicle dynamics and tire simulation. To demonstrate the effectiveness of tire simulation, results from the efficient tire model isolated from the vehicle are compared to output from a nonlinear finite element model. Also, the paper compares results from the full vehicle ATV simulation and a field test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.