Abstract

Mobile robots designed for agricultural tasks need to deal with challenging outdoor unstructured environments that usually have dynamic and static obstacles. This assumption significantly limits the number of mapping, path planning, and navigation algorithms to be used in this application. As a representative case, the autonomous lawn mowing robot considered in this work is required to determine the working area and to detect obstacles simultaneously, which is a key feature for its working efficiency and safety. In this context, RGB-D cameras are the optimal solution, providing a scene image including depth data with a compromise between precision and sensor cost. For this reason, the obstacle detection effectiveness and precision depend significantly on the sensors used, and the information processing approach has an impact on the avoidance performance. The study presented in this work aims to determine the obstacle mapping accuracy considering both hardware- and information processing-related uncertainties. The proposed evaluation is based on artificial and real data to compute the accuracy-related performance metrics. The results show that the proposed image and depth data processing pipeline introduces an additional distortion of 38 cm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.