Abstract
We propose a novel obstacle categorization model combining global feature with local feature to identify cars, pedestrians and unknown backgrounds. A new obstacle identification method, which is hybrid the global feature and local feature, is proposed for robustly recognizing an obstacle with and without occlusion. For the global analysis, we propose the modified GIST based on biologically motivated the C1 feature, which is robust to image translation. We also propose the local feature based categorization model for recognizing partially occluded obstacle. The local feature is composed of orientation information at a salient position based on the C1 feature. A classifier based on the Support Vector Machine (SVM) is designed to classify these two features as cars, pedestrians and unknown backgrounds. Finally, all classified results are combined. Mainly, the obstacle categorization model makes a decision based on the global feature analysis. Since the global feature cannot express partially occluded obstacle, the local feature based model verifies the result of the global feature based model when the result is an unknown background. Experimental results show that the proposed model successfully categorizes obstacles including partially occluded obstacles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.