Abstract
Quantum dynamics induced in quenching a d-dimensional topological phase across a phase transition may exhibit a nontrivial dynamical topological pattern on the (d-1)D momentum subspace, called band inversion surfaces (BISs), which have a one-to-one correspondence to the bulk topology of the postquench phase. Here we report the experimental observation of such dynamical bulk-surface correspondence through measuring the topological charges in a 2D quantum anomalous Hall model realized in an optical Raman lattice. The system can be quenched with respect to every spin axis by suddenly varying the two-photon detuning or phases of the Raman couplings, in which the topological charges and BISs are measured dynamically by the time-averaged spin textures. We observe that the total charges in the region enclosed by BISs define a dynamical topological invariant, which equals the Chern number of the postquench band and also characterizes the topological pattern of a dynamical field emerging on the BISs, rendering the dynamical bulk-surface correspondence. This study opens a new avenue to explore topological phases dynamically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.