Abstract

The Kondo effect, deriving from a local magnetic impurity mediating electron-electron interactions, constitutes a flourishing basis for understanding a large variety of intricate many-body problems. Its experimental implementation in tunable circuits has made possible important advances through well-controlled investigations. However, these have mostly concerned transport properties, whereas thermodynamic observations - notably the fundamental measurement of the spin of the Kondo impurity - remain elusive in test-bed circuits. Here, with a novel combination of a ‘charge’ Kondo circuit with a charge sensor, we directly observe the state of the impurity and its progressive screening. We establish the universal renormalization flow from a single free spin to a screened singlet, the associated reduction in the magnetization, and the relationship between scaling Kondo temperature and microscopic parameters. In our device, a Kondo pseudospin is realized by two degenerate charge states of a metallic island, which we measure with a non-invasive, capacitively coupled charge sensor. Such pseudospin probe of an engineered Kondo system opens the way to the thermodynamic investigation of many exotic quantum states, including the clear observation of Majorana zero modes through their fractional entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.