Abstract

Abstract The dynamic electronic structure of atoms and molecules can be directly observed by means of the (e, 2e) reaction, which measures the distribution of energies and momenta of two electrons in coincidence after a knockout reaction initiated by an electron beam of known momentum incident on a molecular gas target. The molecular state for each event is identified by the electron separation energy. The recoil momentum for each event is known from the difference of measured initial and final momenta. It has been verified that values of this momentum are equal under suitable conditions to the momentum of the electron in the target immediately before knockout. Thus the spherically-averaged electron momentum distribution for each molecular orbital is measured. This is directly related to molecular orbitals calculated by the methods of quantum chemistry. Properties obtained by this method for different types of molecules are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.