Abstract

Ultimately, brittle fracture involves breaking atomic bonds. However, we still lack a clear picture of what happens in the highly deformed region around a moving crack tip. Consequently, we still cannot link nanoscale phenomena with the macroscopic toughness of materials. The unsolved challenge is to observe the movement of the crack front at the nanoscale while extracting quantitative information. Here, we address this challenge by monitoring stable crack growth inside a transmission electron microscope. Our analysis demonstrates how phase transformation toughening, previously thought to be effective at the microscale and above, promotes crack deflection at the nanolevel and increases the fracture resistance. The work is a first step to help connecting the atomistic and continuous view of fracture in a way that can guide the design of the next generation of strong and tough materials demanded by technologies as diverse as healthcare, energy generation, or transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.