Abstract

The method of moments is applied to an underdamped bistable oscillator driven by Gaussian white noise and a weak periodic force for the observations of stochastic resonance and the resulting resonant structures are compared with those from Langevin simulation. The physical mechanisms of the stochastic resonance are explained based on the evolution of the intrawell frequency peak and the above-barrier frequency peak via the noise intensity and the fluctuation-dissipation theorem, and the three possible sources of stochastic resonance in the system are confirmed. Additionally, with the noise intensity fixed, the stochastic resonant structures are also observed by adjusting the nonlinear parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call