Abstract

Numerical simulations of the three-dimensional structure and time evolution of stellar surface convection are now possible, at least for solar-type stars. Using the output from such simulations as sets of spatially and temporally varying model atmospheres, synthetic granulation images and spectral line profiles are computed, and compared to observations. Thus obtained disk-integrated data agree with observed lineshapes and bisector patterns in different stars, and also permit stellar rotation to be determined. Such simulations represent the first generation of models that are free from the classical ad hoc parameters of ‘mixing-length’, ‘micro-’ or ‘macro-turbulence’, parameters which in the past have characterized and limited stellar astrophysics.To infer the surface structure also in more exotic stars, simpler and parametrized models must still be used to interpret observed line asymmetries. Such models suggest that rapidly rising ‘granules’ cover only a small surface fraction on early-type stars, a situation opposite to that in solar-type ones, and one likely to affect magnetic fields and stellar activity. Theoretical challenges for the future include detailed modeling also of early-type, giant, and other non-solar type stars of different rotational velocities; the hydrodynamics of entire stellar envelopes (including the interaction with global oscillations); and the interaction with magnetic fields (including their generation). Greatly increased computing power will be needed for such detailed modeling throughout the Herzsprung-Russell diagram, possibly requiring custom-designed computers.Signatures of stellar granulation are primarily observed as asymmetries and wavelength shifts in photospheric absorption lines. Observational challenges include achieving sufficient spectral resolution to fully resolve such asymmetries; identifying granulation signatures throughout the HR-diagram (including the blended spectra of cool stars); observing how line asymmetries for a given spectral type depend on stellar rotational velocity, measuring wavelength shifts between groups of different lines in the same star, and between different stars; monitoring lineshift variations during stellar activity cycles; and ultimately high-resolution spectroscopy of spatially resolved granulation structures across stellar disks. The latter will require active optics on future very large telescopes, or the use of long-baseline optical interferometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.