Abstract

Quasicrystals are long-range ordered but not periodic, representing an interesting middle ground between order and disorder. We experimentally and numerically study the localization transition in the ground state of noninteracting and weakly interacting bosons in an eightfold symmetric quasicrystalline optical lattice. In contrast to typically used real space insitu techniques, we probe the system in momentum space by recording matter wave diffraction patterns. Shallow lattices lead to extended states whereas we observe a localization transition at a critical lattice depth of V_{0}≈1.78(2)E_{rec} for the noninteracting system. Our measurements and Gross-Pitaevskii simulations demonstrate that in interacting systems the transition is shifted to deeper lattices, as expected from superfluid order counteracting localization. Quasiperiodic potentials, lacking conventional rare regions, provide the ideal testing ground to realize many-body localization in 2D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call