Abstract

In recent years, surface enhanced Raman spectroscopy (SERS) has emerged as a prominent tool for probing molecular interaction and reaction with single-molecule sensitivity. Here we use SERS to investigate the dynamic changes of the cucurbit[7]uril (CB[7]) based plasmonic molecular junctions in solution, which are spontaneously formed by the adsorption of gold nanoparticles (GNPs) at the CB[7] modified gold nanoelectrode (GNE) surface. The typical fingerprint Raman peaks of CB[7] are very weak in the SERS spectra. However, chemically enhanced peaks are prominent in the spectra due to the charge transfer across the metal-molecule interface through specific noncovalent interactions between the gold atoms and CB[7] or its guest molecule. We first investigated the selectively enhanced and greatly shifted C[double bond, length as m-dash]O peak of CB[7] in the SERS spectra. Based on the bias-dependent changes of the C[double bond, length as m-dash]O peak, we found the gold-carbonyl interaction was strengthened by the positive bias applied to the GNE, resulting in stable CB[7] junctions. Next, we found the CB[7] junction could also be stabilized by the inclusion of a guest molecule amino-ferrocene, attributed to the interactions between gold adatoms and the cyclopentadienyl ring of the guest molecule. Because this interaction is sensitive to the orientation of the guest molecule in the cavity, we revealed the rotational motion of a guest molecule inside the CB[7] cavity based on the dynamic spectral changes of the cyclopentadienyl ring peak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.