Abstract
The paper discusses the synthesis of linear and nonlinear observers to estimate rotor states from fuselage state measurements alone. First, the paper reviews two forms of the classical Luenberger linear observer applied to the rotor state estimation problem and identifies some limitations thereof. Thereafter, the paper proposes a new robust nonlinear discontinuous observer based on the sliding mode theory to simultaneously estimate rotor flapping and lead-lagging states from fuselage state measurements. For this new nonlinear observer, the paper presents stability analyses to determine conditions that guarantee rotor state estimation accuracy despite unknown but bounded turbulence input. The nonlinear observer also lends itself to the online and real-time estimation of the unknown turbulence input. Simulation results in calm and turbulent air conditions highlight the efficacy and performance of the nonlinear discontinuous observer. Such rotor state observers could provide an independent source of online and real-time rotor states estimates to complement or supplement in situ rotor state measurement apparatus for various flight control and health-monitoring functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.