Abstract

In this paper, an observer-based terminal sliding mode control approach is proposed and applied to the attitude control system of the flexible spacecraft with fuel slosh. The disturbances from the vibration of the flexible appendage and fuel slosh are modelled as derivative-bounded disturbances which can be estimated and rejected by the disturbance-observer-based-control (DOBC). Next, by combining the DOBC with terminal sliding mode controller (TSMC), a composite controller is proposed to realize the finite time convergence. Therefore, anti-disturbance and finite time attitude stabilization can be guaranteed by the proposed composite controller. Linear matrix inequality (LMI) -based algorithm is used to compute the observer parameters. Finally, theoretical analysis and simulation results are given to verify the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call