Abstract

An observer-based sliding mode control scheme is proposed for suppressing bending-torsion coupling flutter motions of a wing aeroelastic system with delayed output by using the piezoelectric patch actuators. The wing structure is modeled as a thin-walled beam, and the aerodynamics on the wing are computed by the strip theory. For the implementation of the control algorithm, the piezoelectric patch is bonded on the top surface of the beam to act as the actuator. Ignoring the effect of piezoelectric actuators on structural dynamics, only considering the bending moments induced by piezoelectric effects, the corresponding dynamic motion equation is established by using the Lagrange method with the assumed mode method. The flutter speed and frequency of the closed-loop system with time delay are obtained by solving a polynomial eigenvalue problem. An observer-based controller that does not dependent on time delay is developed for suppressing the flutter, and the corresponding gain matrices are obtained by solving linear matrix inequalities. The sufficient condition for the asymptotic stability of the closed-loop system is derived in terms of linear matrix inequalities. The simulation results demonstrate that the proposed control strategy based on the piezoelectric actuator is effective in wing bending-torsion coupling flutter system with a delayed output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.