Abstract

<p>In this paper, a novel observer-based robust preview tracking controller design method is proposed for a class of continuous-time Lipschitz nonlinear systems with external disturbances and unknown states. First, a state observer is designed to reconstruct unknown system states. Second, using differentiation, the state lifting technique, the differential mean value theorem, and several ingenious mathematical manipulations, an augmented error system (AES) containing the previewable information of a reference signal is constructed, thereby transforming the tracking control problem into a robust $ H_{\infty} $ control problem. Based on linear parameter-varying (LPV) system theory, a sufficient condition for asymptotic stability of a closed-loop system with a robust $ H_{\infty} $ performance level is established in terms of the linear matrix inequality (LMI). Furthermore, a tracking controller, which includes observer-based feedback control, integral control, and preview feedforward compensation, is established for the original system. In particular, the tracking controller design is simplified by computing the observer and tracking controller gains simultaneously via only a one-step LMI algorithm. Finally, numerical simulation results demonstrate that the proposed controller leads to superior improvement in the output tracking performance compared with the existing methods.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.