Abstract

For a class of large-scale nonlinear systems in nonstrict-feedback structure with immeasurable states, an adaptive decentralized fuzzy control strategy on the basis of event-triggered mechanism is investigated in this paper. Fuzzy logic systems are implemented to construct an observer, which approximates the unknown nonlinear function in the controller. In light of backstepping control technique and event-triggered mechanism, a decentralized adaptive fuzzy control approach is proposed to compensate for the effects of actuator faults. When the triggering condition is satisfied, the communication burden can be reduced. Moreover, the whole signals of the closed-loop system are semiglobally uniformly ultimately bounded and Zeno behavior can be successfully excluded. Furthermore, the outputs of subsystems can track the desired reference signals. Finally, some simulation results are utilized to testify the effectiveness of the proposed control scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.