Abstract

This paper studies the problem of designing observer-based controllers for a class of delayed neural networks with nonlinear observation. The system under consideration is subject to nonlinear observation and an interval time-varying delay. The nonlinear observation output is any nonlinear Lipschitzian function and the time-varying delay is not required to be differentiable nor its lower bound be zero. By constructing a set of appropriate Lyapunov---Krasovskii functionals and utilizing the Newton---Leibniz formula, some delay-dependent stabilizability conditions which are expressed in terms of Linear Matrix Inequalities (LMIs) are derived. The derived conditions allow simultaneous computation of two bounds that characterize the exponential stability rate of the closed-loop system. The unknown observer gain and the state feedback observer-based controller are directly obtained upon the feasibility of the derived LMIs stabilizability conditions. A simulation example is presented to verify the effectiveness of the proposed result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.