Abstract
Abstract In this paper, the problem of observer-based adaptive tracking control is investigated for a class of nonlinear systems with unknown control direction, input saturation and tracking error constraint. The Nussbaum function is employed to address the unknown control direction and a state observer is constructed by neural networks (NNs) to estimate the unmeasurable states. A new error constraint transformation is proposed to guarantee that the tracking error satisfies the prescribed performance. Then, a novel adaptive prescribed performance neural network (NN) output feedback tracking control method is designed. It is proved that the designed controller can guarantee the boundedness of all the signals in the closed-loop system and the prescribed time-varying tracking performance. Finally, simulations on two examples are performed to illustrate the efficiency of the proposed control method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.