Abstract

This article investigates the adaptive fuzzy output-feedback backstepping control design problem for uncertain strict-feedback nonlinear systems in the presence of unknown virtual and actual control gain functions and unmeasurable states. A fuzzy state observer is designed via fuzzy-logic systems, thus the unmeasurable states are estimated based on the designed fuzzy state observer. By constructing the logarithm Lyapunov functions and incorporating the property of the fuzzy basis functions and bounded control design technique into the adaptive backstepping recursive design, a novel observer-based adaptive fuzzy output-feedback control method is developed. The proposed fuzzy adaptive output-feedback backstepping control scheme can remove the restrictive assumptions in the previous literature that the virtual control gains and actual control gain functions must be constants. Furthermore, it can make the control system be semiglobally uniformly ultimately boundedness (SGUUB) and keep the observer and tracking errors to remain in a small neighborhood of the origin. The numerical simulation example is presented to validate the effectiveness of the proposed control scheme and theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call