Abstract

In this paper, an observer-based indirect adaptive fuzzy output feedback control scheme is proposed for a biped robotic system. Fuzzy logic systems are employed to approximate the biped unknown nonlinear functions. Based on the fuzzy system, a state observer is designed for estimating the states of the controlled system. In addition, we use a regularized inverse function to overcome the control singularity problem. Based on Lyapunov stability analysis, convergence of the system states and boundedness of tracking errors can be achieved by the proposed control scheme. The experiment results are used to demonstrate the effectiveness and robustness of the proposed control scheme, and the tracking performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.