Abstract

Smart battery management systems require reliable state information, which is unavailable through direct measurements. Electrochemical models are relevant in this context as these describe the internal phenomena, which govern the battery These models can thus be used to design observers and hence to estimate the state variables on-line. We propose an electrochemical model of a lithium ion battery given by a set of ordinary differential equations built from the spatial discretisation of partial differential equations that locally describe mass and charge transport of the lithium. We then design an observer and analyse its stability via a polytopic approach, which relies on the satisfaction of linear matrix inequalities. The latter are shown to be verified for standard model parameters values. Simulation results on the original infinite-dimensional model are presented, which show the good performance of the observer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.