Abstract

This paper deals with the position control of a hydraulic servo system rod. Our approach considers the surface design as a case of virtual controller design using the backstepping method. We first prove that a linear surface does not yield to a robust controller with respect to the unmatched uncertainty and perturbation. Next, to remedy this deficiency, a sliding controller based on the second-order sliding mode is proposed which outperforms the first controller in terms of chattering attenuation and robustness with respect to parameter uncertainty only. Next, based on backstepping a nested variable structure design method is proposed which ensures the robustness with respect to both unmatched uncertainty and perturbation. Finally, a robust sliding mode observer is appended to the closed loop control system to achieve output feedback control. The stability and convergence to reference position with zero steady state error are proven when the controller is constructed using the estimated states. To illustrate the efficiency of the proposed methods, numerical simulation results are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.