Abstract

In this paper, a new method to manage the stabilization and control problems of n-dimensional linear systems plus dead time, which includes one, two, or three unstable poles, is proposed. The control methodology proposed in this work is an Observer-based Proportional-Integral-Derivative (PID) strategy, where an observer and a PID controller are used to relocate the original unstable open-loop poles to stabilize the resultant closed-loop system. The observer provides an adequate estimation of the delayed-free variables and the PID uses the delay-free variables estimated by the proposed observer. Also, step-tracking is achieved in the overall control scheme. Necessary and sufficient conditions are presented to ensure closed-loop stability based on the open loop parameters of the system. The observer-based PID strategy considers five to seven constant parameters to obtain a stable closed-loop system. A general procedure to implement the proposed control strategy is presented and its performance is evaluated by means of numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.